Задаци

  • 1.      

    Целих бројева \(x\) за које важи неједналост  \(x+1>\sqrt{5-x}\)  има:
     

     

    \(2\)
    \(1\)     
    \(4\)  
    \(3\)  
    \(5\)  

    Провери одговоре Не знам

  • 2.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(   \frac{38}{9}   \)
    \(    \frac{39}{2}   \)  
    \(  9  \)
    \(  7    \)
    \(   \frac{5}{2}   \)  

    Провери одговоре Не знам

  • 3.      

     Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:

    \(-260\)
    \(-10\)        
     \(-170\)
    \(10\)  
    \(170\)

    Провери одговоре Не знам

  • 4.      

    Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:

     

    \(1\)    
    \(10\)
     \(1+2\sqrt{6}\)
    \(5-2\sqrt{6}\)
    \(5\)  

    Провери одговоре Не знам

  • 5.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(7\)
    \(-7\)
    \(-3\)  
    \(3\)
    \(-12\) 

    Провери одговоре Не знам

  • 6.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(\frac{7\sqrt{2}}{34}\) 
    \(-\frac{15\sqrt{2}}{34}\)  
    \(\frac{23\sqrt{2}}{34}\)  
    \(-\frac{23\sqrt{2}}{34}\)    
    \(-\frac{7\sqrt{2}}{34} \)  

    Провери одговоре Не знам

  • 7.      

    Збир свих решења једначине \(2^{x^2-3x}+(\frac{1}{2})^{x^2-3x-4}=17\) једнак је:

    \(    12     \)   
    \(   9\)
    \( 6 \)
    \(  3    \)
    \(     15    \)

    Провери одговоре Не знам

  • 8.      

    На колико начина се од 6 девојака и  7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?

     

    \(41\)  
    \(128\)    
    \(945\)  
    \(512\)
    \(420\)

    Провери одговоре Не знам

  • 9.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(  1+i \)
    \(  1-i   \)
    \(   -1-i    \)  
    \(    i  \)  
    \(   -1+i     \)

    Провери одговоре Не знам

  • 10.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( \frac{40}{27}\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)
    \( 3\pi cm^3 \) 
    \( 5\pi cm^3 \) 
    \( \frac{40}{9}\pi cm^3 \) 

    Провери одговоре Не знам

  • 11.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    6
    3      
    5
    4

    Провери одговоре Не знам

  • 12.      

      Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:

     

     \(1\)  
    \(6      \)
    \(4\)
    \(-1\)
     \(-6\)

    Провери одговоре Не знам

  • 13.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

    \(\frac{\pi}{2}\)
     \(\frac{2\pi}{3}\)
    \(\frac{5\pi}{6}   \) 
    \(\frac{5\pi}{12}\)        
    \(\frac{3\pi}{4} \) 

    Провери одговоре Не знам

  • 14.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

    \(10\)  
    \(6 \)       
    \(16\)
     \(8\)
    \(12\)

    Провери одговоре Не знам

  • 15.      

     Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако: 

     

     \(\frac{1}{2(a+1)} \)  
    \(\frac{2}{a+1}\)
    \(\frac{1}{2a+1}\)
    \(\frac{1}{a+2}\)
    \(\frac{a+1}{2}\)     

    Провери одговоре Не знам

  • 16.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(  -12     \)
    \(    3  \) 
    \(    6\) 
    \(  -18     \)
    \(   -6\)

    Провери одговоре Не знам

  • 17.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

    \( 16\)
    \(-6 \)        
    \(4\)
    \(-12\)
     \( 8\)

    Провери одговоре Не знам

  • 18.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(>7\)
    \(4\)
    \(6\)  
    \(7 \)  
    \(3\)    

    Провери одговоре Не знам

  • 19.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(   \frac{1}{4}          \)
    \(    \frac{37}{8}      \)  
    \(  1      \)
    \(  9     \)
    \(    4   \)  

    Провери одговоре Не знам

  • 20.      

    Ако је \(sin\alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi, cos\beta=-\frac{3}{5}, \pi<\beta<\frac{3\pi}{2}\) , тада је \(cos(\alpha + \beta)\) једнако:

    \(   -\frac{56}{65}   \)
    \(     \frac{16}{65}   \)  
    \(    -\frac{16}{65}     \)  
    \( \frac{56}{65}  \)
    \(  \frac{36}{65}   \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време