Задаци

  • 1.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(    i  \)  
    \(   -1-i    \)  
    \(   -1+i     \)
    \(  1+i \)
    \(  1-i   \)

    Провери одговоре Не знам

  • 2.      

    Целих бројева \(x\) за које важи неједналост  \(x+1>\sqrt{5-x}\)  има:
     

     

    \(1\)     
    \(5\)  
    \(3\)  
    \(4\)  
    \(2\)

    Провери одговоре Не знам

  • 3.      

    Целих бројева који припадају скупу решења неједначине \(\frac{3x-16}{-x^2+11x-28} \geq 1\) има:

    \(     5    \)   
    \(   4\)
    \(  2    \)
    бесконачно много 
    \( 3 \)

    Провери одговоре Не знам

  • 4.      

    Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:

    \(   40 \)
    \(    120     \)
    \(     240    \)   
    \(  30    \)
    \( 60 \)

    Провери одговоре Не знам

  • 5.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(>7\)
    \(4\)
    \(6\)  
    \(7 \)  
    \(3\)    

    Провери одговоре Не знам

  • 6.      

    Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:

    \(            288      \)  
    \( 312   \)
    \(  360    \)
    \(   120   \)
    \(    216  \)  

    Провери одговоре Не знам

  • 7.      

     Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:

    \(-260\)
    \(10\)  
    \(-10\)        
     \(-170\)
    \(170\)

    Провери одговоре Не знам

  • 8.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(-7\)
    \(3\)
    \(7\)
    \(-3\)  
    \(-12\) 

    Провери одговоре Не знам

  • 9.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{1}{2}\)  
    \(\frac{5}{6}\)  
    \(\frac{3}{2} \)   
    \(\frac{1}{8}\)        
    \(\frac{3}{4}\)  

    Провери одговоре Не знам

  • 10.      

    На колико начина се од 6 девојака и  7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?

     

    \(512\)
    \(41\)  
    \(420\)
    \(945\)  
    \(128\)    

    Провери одговоре Не знам

  • 11.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \(   \frac{3}{5}     \)
    \(            \frac{5}{3}          \)  
    \(  -\frac{\sqrt{3}}{6}     \)
    \( -\frac{5}{3}     \)
    \(    -\frac{3}{5}   \)  

    Провери одговоре Не знам

  • 12.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

    \(10\)  
    \(12\)
    \(6 \)       
     \(8\)
    \(16\)

    Провери одговоре Не знам

  • 13.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

     \( 8\)
    \( 16\)
    \(-6 \)        
    \(4\)
    \(-12\)

    Провери одговоре Не знам

  • 14.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

    \(\frac{\pi}{2}\)
    \(\frac{5\pi}{6}   \) 
     \(\frac{2\pi}{3}\)
    \(\frac{3\pi}{4} \) 
    \(\frac{5\pi}{12}\)        

    Провери одговоре Не знам

  • 15.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    6
    3      
    5
    4

    Провери одговоре Не знам

  • 16.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(16\)
    \(13\)
    \(14\)  
    \(12\)    
    \(15\)  

    Провери одговоре Не знам

  • 17.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(  1      \)
    \(   \frac{1}{4}          \)
    \(    \frac{37}{8}      \)  
    \(  9     \)
    \(    4   \)  

    Провери одговоре Не знам

  • 18.      

    Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:

     

    \(2+i\)      
    \(2-i\)
     \(1-i\)
    \(1-2i\)  
    \(1+2i\)

    Провери одговоре Не знам

  • 19.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(-\frac{15\sqrt{2}}{34}\)  
    \(-\frac{23\sqrt{2}}{34}\)    
    \(\frac{7\sqrt{2}}{34}\) 
    \(\frac{23\sqrt{2}}{34}\)  
    \(-\frac{7\sqrt{2}}{34} \)  

    Провери одговоре Не знам

  • 20.      

    Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
     

     

    \(f_1\neq f_2\neq f_3\)    
    \(f_1=f_2=f_3\)    
    \(f_3=f_1\neq f_2\)  
     \(f_1\neq f_2=f_3\)    
    \(f_1=f_2\neq f_3\)  

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време