Задаци

  • 1.      

     Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако: 

     

    \(\frac{2}{a+1}\)
    \(\frac{a+1}{2}\)     
     \(\frac{1}{2(a+1)} \)  
    \(\frac{1}{2a+1}\)
    \(\frac{1}{a+2}\)

    Провери одговоре Не знам

  • 2.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(  1-i   \)
    \(   -1-i    \)  
    \(    i  \)  
    \(   -1+i     \)
    \(  1+i \)

    Провери одговоре Не знам

  • 3.      

    Целих бројева који припадају скупу решења неједначине \(\frac{3x-16}{-x^2+11x-28} \geq 1\) има:

    \( 3 \)
    \(  2    \)
    бесконачно много 
    \(   4\)
    \(     5    \)   

    Провери одговоре Не знам

  • 4.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \( 102  \)
    \(  104    \)
    \(   100      \)  
    \(   106   \)
    \(    108 \)  

    Провери одговоре Не знам

  • 5.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

    \(\frac{5\pi}{12}\)        
    \(\frac{\pi}{2}\)
    \(\frac{3\pi}{4} \) 
    \(\frac{5\pi}{6}   \) 
     \(\frac{2\pi}{3}\)

    Провери одговоре Не знам

  • 6.      

    Број свих решења једначине \(log_3(x+1)-log_3(3x-1)+log_3(5x-4)=2log_3(x-2)\) је:

    \( 1 \)
    \(    2     \)  
    \(   0\)
    \(  3    \)
    већи од \(     3     \)   

    Провери одговоре Не знам

  • 7.      

    У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:

    \(     \frac{3}{2}    \)  
    \(   \frac{5}{2}    \)
    \(    2     \) 
    \( 3 \)
    \(  2\sqrt{3}    \)

    Провери одговоре Не знам

  • 8.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(14\)  
    \(13\)
    \(16\)
    \(15\)  
    \(12\)    

    Провери одговоре Не знам

  • 9.      

    Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:

    \(   \frac{\pi}{4}    \)  
    \(  \frac{\pi}{6}  \)
    \(  \frac{\pi}{8}    \)
    \(   \frac{\pi}{3} \)
    \(    \frac{2\pi}{9}    \) 

    Провери одговоре Не знам

  • 10.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( 5\pi cm^3 \) 
    \( \frac{40}{27}\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)
    \( \frac{40}{9}\pi cm^3 \) 
    \( 3\pi cm^3 \) 

    Провери одговоре Не знам

  • 11.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(-\frac{15\sqrt{2}}{34}\)  
    \(\frac{7\sqrt{2}}{34}\) 
    \(-\frac{7\sqrt{2}}{34} \)  
    \(\frac{23\sqrt{2}}{34}\)  
    \(-\frac{23\sqrt{2}}{34}\)    

    Провери одговоре Не знам

  • 12.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(>7\)
    \(4\)
    \(3\)    
    \(6\)  
    \(7 \)  

    Провери одговоре Не знам

  • 13.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(  1      \)
    \(  9     \)
    \(   \frac{1}{4}          \)
    \(    4   \)  
    \(    \frac{37}{8}      \)  

    Провери одговоре Не знам

  • 14.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(-7\)
    \(-3\)  
    \(-12\) 
    \(7\)
    \(3\)

    Провери одговоре Не знам

  • 15.      

    Ако је \(log_23=a \), тада је \(log_64\) једнако:

    \(  \frac{2}{1+a}  \)
    \( \frac{1}{2(1+a)}  \)  
    \(  -2(1+a) \)
    \(   \frac{1}{1+2a}       \)
    \(       \frac{1}{2+a}     \)  

    Провери одговоре Не знам

  • 16.      

    Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:

    \(4\)  
    \(2\)
    \( 1 \)  
    \(5 \)  
    \(3\)

    Провери одговоре Не знам

  • 17.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{1}{2}\)  
    \(\frac{3}{4}\)  
    \(\frac{3}{2} \)   
    \(\frac{5}{6}\)  
    \(\frac{1}{8}\)        

    Провери одговоре Не знам

  • 18.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

    \(2\)  
    \(3 \)
     \(4\)  
    \(2,5\)
    \(4,5\)

    Провери одговоре Не знам

  • 19.      

      Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:

     

    \(-1\)
     \(-6\)
    \(4\)
    \(6      \)
     \(1\)  

    Провери одговоре Не знам

  • 20.      

    Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:

    \( 6 \)
    \(   4\)
    \(     5    \)  
    \(  3    \)
    \(    2     \)  

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време