Задаци

  • 1.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \( 102  \)
    \(  104    \)
    \(    108 \)  
    \(   106   \)
    \(   100      \)  

    Провери одговоре Не знам

  • 2.      

    Ако је \(log_23=a \), тада је \(log_64\) једнако:

    \(  -2(1+a) \)
    \(   \frac{1}{1+2a}       \)
    \(  \frac{2}{1+a}  \)
    \( \frac{1}{2(1+a)}  \)  
    \(       \frac{1}{2+a}     \)  

    Провери одговоре Не знам

  • 3.      

    Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:

     

    \(2+i\)      
    \(1+2i\)
     \(1-i\)
    \(2-i\)
    \(1-2i\)  

    Провери одговоре Не знам

  • 4.      

    Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:

     

    \(10\)
    \(1\)    
    \(5\)  
     \(1+2\sqrt{6}\)
    \(5-2\sqrt{6}\)

    Провери одговоре Не знам

  • 5.      

    Целих бројева који припадају скупу решења неједначине \(\frac{3x-16}{-x^2+11x-28} \geq 1\) има:

    \(     5    \)   
    \(   4\)
    бесконачно много 
    \(  2    \)
    \( 3 \)

    Провери одговоре Не знам

  • 6.      

    На колико начина се од 6 девојака и  7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?

     

    \(945\)  
    \(420\)
    \(128\)    
    \(41\)  
    \(512\)

    Провери одговоре Не знам

  • 7.      

    Целих бројева \(x\) за које важи неједналост  \(x+1>\sqrt{5-x}\)  има:
     

     

    \(3\)  
    \(4\)  
    \(5\)  
    \(1\)     
    \(2\)

    Провери одговоре Не знам

  • 8.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(    \frac{39}{2}   \)  
    \(   \frac{38}{9}   \)
    \(  7    \)
    \(  9  \)
    \(   \frac{5}{2}   \)  

    Провери одговоре Не знам

  • 9.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(15\)  
    \(16\)
    \(13\)
    \(14\)  
    \(12\)    

    Провери одговоре Не знам

  • 10.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( \frac{80}{27}\pi cm^3 \)
    \( 3\pi cm^3 \) 
    \( \frac{40}{27}\pi cm^3 \) 
    \( \frac{40}{9}\pi cm^3 \) 
    \( 5\pi cm^3 \) 

    Провери одговоре Не знам

  • 11.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \(            \frac{5}{3}          \)  
    \(  -\frac{\sqrt{3}}{6}     \)
    \(   \frac{3}{5}     \)
    \(    -\frac{3}{5}   \)  
    \( -\frac{5}{3}     \)

    Провери одговоре Не знам

  • 12.      

    Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:

    \(  360    \)
    \(            288      \)  
    \(    216  \)  
    \( 312   \)
    \(   120   \)

    Провери одговоре Не знам

  • 13.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

    \(12\)
     \(8\)
    \(10\)  
    \(6 \)       
    \(16\)

    Провери одговоре Не знам

  • 14.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{1}{8}\)        
    \(\frac{3}{2} \)   
    \(\frac{3}{4}\)  
    \(\frac{5}{6}\)  
    \(\frac{1}{2}\)  

    Провери одговоре Не знам

  • 15.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(  1      \)
    \(    4   \)  
    \(    \frac{37}{8}      \)  
    \(  9     \)
    \(   \frac{1}{4}          \)

    Провери одговоре Не знам

  • 16.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(7\)
    \(-3\)  
    \(-12\) 
    \(-7\)
    \(3\)

    Провери одговоре Не знам

  • 17.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

    \(3 \)
    \(2\)  
    \(4,5\)
    \(2,5\)
     \(4\)  

    Провери одговоре Не знам

  • 18.      

    Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:

    \(   \frac{\pi}{4}    \)  
    \(   \frac{\pi}{3} \)
    \(  \frac{\pi}{8}    \)
    \(  \frac{\pi}{6}  \)
    \(    \frac{2\pi}{9}    \) 

    Провери одговоре Не знам

  • 19.      

    Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:

    \(2\)
    \(4\)  
    \( 1 \)  
    \(3\)
    \(5 \)  

    Провери одговоре Не знам

  • 20.      

     Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:

    \(170\)
    \(10\)  
    \(-10\)        
    \(-260\)
     \(-170\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време