Задаци

  • 1.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \( 102  \)
    \(  104    \)
    \(    108 \)  
    \(   106   \)
    \(   100      \)  

    Провери одговоре Не знам

  • 2.      

    Производ свих решења једначине \(\sqrt{3x-1}+\sqrt{6-x}=5\) једнак је:

    \(   \frac{45}{2}     \)
    \(        5\)  
    \(    20  \)  
    \( \frac{75}{4}      \)
    \(  \frac{15}{4}      \)

    Провери одговоре Не знам

  • 3.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{1}{2}\)  
    \(\frac{3}{4}\)  
    \(\frac{3}{2} \)   
    \(\frac{5}{6}\)  
    \(\frac{1}{8}\)        

    Провери одговоре Не знам

  • 4.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(   -6\)
    \(  -12     \)
    \(  -18     \)
    \(    3  \) 
    \(    6\) 

    Провери одговоре Не знам

  • 5.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

    \(\frac{3\pi}{4} \) 
    \(\frac{5\pi}{12}\)        
     \(\frac{2\pi}{3}\)
    \(\frac{5\pi}{6}   \) 
    \(\frac{\pi}{2}\)

    Провери одговоре Не знам

  • 6.      

    Ако је \(sin\alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi, cos\beta=-\frac{3}{5}, \pi<\beta<\frac{3\pi}{2}\) , тада је \(cos(\alpha + \beta)\) једнако:

    \(    -\frac{16}{65}     \)  
    \( \frac{56}{65}  \)
    \(   -\frac{56}{65}   \)
    \(     \frac{16}{65}   \)  
    \(  \frac{36}{65}   \)

    Провери одговоре Не знам

  • 7.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( 5\pi cm^3 \) 
    \( \frac{40}{27}\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)
    \( 3\pi cm^3 \) 
    \( \frac{40}{9}\pi cm^3 \) 

    Провери одговоре Не знам

  • 8.      

    Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
     

     

    \(f_1=f_2=f_3\)    
    \(f_3=f_1\neq f_2\)  
     \(f_1\neq f_2=f_3\)    
    \(f_1=f_2\neq f_3\)  
    \(f_1\neq f_2\neq f_3\)    

    Провери одговоре Не знам

  • 9.      

    Ако је \(log_23=a \), тада је \(log_64\) једнако:

    \(  \frac{2}{1+a}  \)
    \( \frac{1}{2(1+a)}  \)  
    \(       \frac{1}{2+a}     \)  
    \(   \frac{1}{1+2a}       \)
    \(  -2(1+a) \)

    Провери одговоре Не знам

  • 10.      

    Целих бројева \(x\) за које важи неједналост  \(x+1>\sqrt{5-x}\)  има:
     

     

    \(3\)  
    \(5\)  
    \(4\)  
    \(2\)
    \(1\)     

    Провери одговоре Не знам

  • 11.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(\frac{7\sqrt{2}}{34}\) 
    \(\frac{23\sqrt{2}}{34}\)  
    \(-\frac{23\sqrt{2}}{34}\)    
    \(-\frac{15\sqrt{2}}{34}\)  
    \(-\frac{7\sqrt{2}}{34} \)  

    Провери одговоре Не знам

  • 12.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(-7\)
    \(-12\) 
    \(7\)
    \(-3\)  
    \(3\)

    Провери одговоре Не знам

  • 13.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(14\)  
    \(16\)
    \(12\)    
    \(15\)  
    \(13\)

    Провери одговоре Не знам

  • 14.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \(    -\frac{3}{5}   \)  
    \(   \frac{3}{5}     \)
    \(  -\frac{\sqrt{3}}{6}     \)
    \( -\frac{5}{3}     \)
    \(            \frac{5}{3}          \)  

    Провери одговоре Не знам

  • 15.      

    Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:

    \(    \frac{2\pi}{9}    \) 
    \(  \frac{\pi}{8}    \)
    \(  \frac{\pi}{6}  \)
    \(   \frac{\pi}{4}    \)  
    \(   \frac{\pi}{3} \)

    Провери одговоре Не знам

  • 16.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(  9     \)
    \(   \frac{1}{4}          \)
    \(    4   \)  
    \(    \frac{37}{8}      \)  
    \(  1      \)

    Провери одговоре Не знам

  • 17.      

    Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:

     

    \(1+2i\)
    \(2+i\)      
    \(2-i\)
     \(1-i\)
    \(1-2i\)  

    Провери одговоре Не знам

  • 18.      

    Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:

    \(3\)
    \(2\)
    \(4\)  
    \(5 \)  
    \( 1 \)  

    Провери одговоре Не знам

  • 19.      

    Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:

    \(  3    \)
    \( 6 \)
    \(    2     \)  
    \(     5    \)  
    \(   4\)

    Провери одговоре Не знам

  • 20.      

    Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:

    \(  360    \)
    \(   120   \)
    \( 312   \)
    \(            288      \)  
    \(    216  \)  

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време