Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Једначина тангентне елипсе \(\frac{x^2}{16}+\frac{y^2}{12}=1\) која пролази кроз тачку \(A(2,3)\) гласи:
Број решења једначине \( \sin(x-\frac{\pi}{3})=\frac{1}{2}\) у интервалу \([-2\pi, 2\pi]\) je:
Ако је збир свих решења једначине \(1+\log_{2}(2^{x}-1)=\log_{2^{x}-1}64 ,\) онда је вредност \(2a+3\) једнака:
Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:
За \(a > 0\), \(b > 0\) и \(a\neq b\) , израз \(\left ( \frac{1}{\sqrt{a}-\sqrt{b}}-\frac{2\sqrt{a}}{\sqrt{a^{3}}+\sqrt{b^{3}}}:\frac{\sqrt{a}-\sqrt{b}}{a-\sqrt{ab}+b} \right )\cdot \left ( a+b+2\sqrt{ab} \right ) \) идентички је једнак изразу:
Скуп решења неједначине \(\log_{\frac{1}{2}}(x^{2}-2x+1)>\log_{2}\frac{1}{4}\) је:
Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:
Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:
Вредност израза \(\frac{\cos 100^o+\sin 50^o}{\sin 200^o}\) једнака је:
Ако се цена артикла најпре повећа за \(30\%\) а онда смањи за \(20\%\) коначна цена артикла у односу на почетну цену је:
Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:
Око праве правилне четворостране призме запремине \(128 cm^3\) описан је кружни ваљак тако да основа призме припадају одговарајућим основама ваљка. Запремина тог ваљка ( у \(cm^3\) ) износи:
У биномном развоју \((x^3+\frac{1}{x})^{12}\), члан који не садржи \(x\) је:
Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:
Ако је \(z=1+i \), тада је \(z^4\) :
Вредност израза \(\left [ 6^2+9\cdot \left ( 5,25-10\cdot (0,5)^3 \right ) +\left ( \frac{5}{2}: \frac{(25)^{\frac{1}{2}}}{6} \right )^2 \right ]^{\frac{1}{4}}\) једнака је:
Број свих петоцифрених бројева дељивих са 5, који имају тачно једну непарну цифру, једнак је:
Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако:
Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:
Вредност израза \(\frac{8}{3-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\) je:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.