Задаци

  • 1.      

    На колико начина се у ред могу поређати 5 ученика и 2 ученице, тако да ученице не стоје једна до друге?

    \(3600 \)
    \(2400 \)
    \(240\)
    \(250 \)
    \(7680 \)

    Провери одговоре Не знам

  • 2.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a)\cup(d,+\infty)\)
    \((-\infty,a)\cup[b,c)\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((-\infty,a]\cup(b,c)\)
    \((a,b)\cup\{c\}\)

    Провери одговоре Не знам

  • 3.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(5\)
    \(6\)
    \(-6\)
    \(-5\)
    \(0\)

    Провери одговоре Не знам

  • 4.      

    Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2  + a_2^2  + a_3^2  = 56\)  и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако

    \(4028\)      
    \(−4030\)
    \(−4028\)
    таква прогресија не постоји 
    \(4030\)

    Провери одговоре Не знам

  • 5.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    4
    0
    1
    3
    2

    Провери одговоре Не знам

  • 6.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{1+b}{b(a+3)} \)
    \(\frac{2+b}{b(a+3)} \)
    \(\frac{b-2}{(b+1)(a+3)} \)
    \(\frac{1+b}{b(a+4)} \)
    \(\frac{-2+b}{b(a-4)} \)

    Провери одговоре Не знам

  • 7.      

    Ако је \(a=0,1^{0,1}\), \(b=0,2^{0,2}\) и \(c=0,3^{0,3}\), тада је

    \(a<b<c\)
    \(c<b<a\)
    \(c<a<b\)
    \(b<c<a\)
    \(b<a<c\)

    Провери одговоре Не знам

  • 8.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{1-\sqrt{5}}{16}\)
    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)
    \(-2-\sqrt{5}\)
    \(\frac{1}{3-\sqrt{5}}\)

    Провери одговоре Не знам

  • 9.      

    Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:

    \(f_1 \neq f_2 = f_3\)
    све функције су једнаке међу собом
    \(f_1=f_2 \neq f_3\)
    међу датим функцијама нема једнаких
    \(f_1=f_3 \neq f_2\)

    Провери одговоре Не знам

  • 10.      

    Последња цифра броја \(7^{2009}\) је:

    5
    1
    9
    7
    3

    Провери одговоре Не знам

  • 11.      

    Ако график функције \(y=\frac{1}{x^2-ax+2}\) садржи тачку \(M\left( -3, \frac{1}{19} \right)\) онда је највећа вредност функције једнака:

    \(\frac{3}{22}\)
    \(4\)
    \(\frac{1}{2}\)
    \(\frac{3}{10}\)
    \(\frac{9}{2}\)

    Провери одговоре Не знам

  • 12.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([−2, 2)\)  
    \([−10, −8)\)  
    \([2, 4]\)
    \([−4, −2)\)   
    \([−8, −4)\)

    Провери одговоре Не знам

  • 13.      

    Ако је \(i^{2}=-1\) и \(\varepsilon\) комплексан број који задовољава услов \(\varepsilon ^{2} + \varepsilon +1=0 ,\) тада је решење једначине \(\frac{x-1}{x+1}=\varepsilon \frac{1+i}{1-i}\) по \(x\) једнако:

    \(−2\varepsilon −1+2i \)
    \(−2\varepsilon −1−2i \)
    \(−2\varepsilon +1−2i \)
    \(2\varepsilon +1−2i \)
    \(2\varepsilon −1−2i \)

    Провери одговоре Не знам

  • 14.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(3(-\sqrt{3}+2) \)
    \(6(\sqrt{3}+2) \)
    \(6(\sqrt{2}+1) \)
    \(6(\sqrt{2}-1) \)
    \(6(\sqrt{3}-\sqrt{2}) \)

    Провери одговоре Не знам

  • 15.      

    Ако је:

     

    \(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)

     

    онда је \(x^2+y^2+z^2\) једнако:

    16
    12
    14
    8
    10

    Провери одговоре Не знам

  • 16.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(1\)
    \(4\)
    \(2\)
    \(0\)
    \(3\)

    Провери одговоре Не знам

  • 17.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(\frac{\sqrt{3}}{2}\)  
    \(\sqrt{3}\)
    \(-\frac{2}{\sqrt{3}}\)
    \(\frac{1}{2}\)
    \(1\)

    Провери одговоре Не знам

  • 18.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y-3=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y-1=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y=0 \)

    Провери одговоре Не знам

  • 19.      

    Вредност израза \(\left ( \frac{\left ( -0,4 \right )^{3}}{\left ( -0,8 \right )^{3}}- \frac{\left ( -0,8 \right )^{3}}{\left ( -0,4 \right )^{3}} \right ):\left ( \frac{3}{4}-3 \right )\) једнака је:

    \(\frac{7}{9} \) 
    \(\frac{7}{2} \) 
    \(\frac{4}{9} \) 
    \(\frac{63}{8} \)
    \(\frac{9}{2} \) 

    Провери одговоре Не знам

  • 20.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(141\)
    \(127\)
    \(93\)
    \(88\)
    \(103\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време