Задаци

  • 1.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(6\)
    \(5\)
    \(-6\)
    \(0\)
    \(-5\)

    Провери одговоре Не знам

  • 2.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    40°
    80°
    100°
    120°
    60°

    Провери одговоре Не знам

  • 3.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(2 \)
    \(1 \)
    \(3 \)
    \(0 \)
    Ниједан од понуђених одговора

    Провери одговоре Не знам

  • 4.      

    Правилна четворострана призма пресечена је са равни која садржи основну ивицу призме. Ако је површина пресека равни призме два пута већи од површине базе, тада је угао између те равни и базе призме једнак:

    \(30^o \)
    \(45^o \)
    \(60^o \)
    \(75^o \)
    \(15^o \)

    Провери одговоре Не знам

  • 5.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

     такав трапез не постоји
    \(10cm\)      
    \(5cm\)  
    \(6cm\)
    \(20cm\)

    Провери одговоре Не знам

  • 6.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([3\sqrt{3},6)\)
    \([\sqrt{3},2\sqrt{3})\)
    \(\emptyset\)
    \([6,8)\)
    \((2\sqrt{3},3\sqrt{3})\)

    Провери одговоре Не знам

  • 7.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    4
    1
    3
    2
    0

    Провери одговоре Не знам

  • 8.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)
    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)

    Провери одговоре Не знам

  • 9.      

    Ако су \(A\) и \(B\) тачке на кругу \(x^2  + y^2  + 4x + 4y + 5  =  0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако: 
     

     

    \(5\)  
    \(5\sqrt{3}+5\)  
    \(5-\sqrt{3}\)
    \(10\)  
    \(5\sqrt{3}\)

    Провери одговоре Не знам

  • 10.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([−4, −2)\)   
    \([2, 4]\)
    \([−10, −8)\)  
    \([−8, −4)\)
    \([−2, 2)\)  

    Провери одговоре Не знам

  • 11.      

    Једначина \(\sqrt{1-x}=-x\) :

    нема решења                
    има тачно једно решење и оно је негативно
    има тачно једно решење и оно је позитивно
    има више од два решење
    има тачно два решења

    Провери одговоре Не знам

  • 12.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{1+b}{b(a+4)} \)
    \(\frac{b-2}{(b+1)(a+3)} \)
    \(\frac{1+b}{b(a+3)} \)
    \(\frac{-2+b}{b(a-4)} \)
    \(\frac{2+b}{b(a+3)} \)

    Провери одговоре Не знам

  • 13.      

    Ако је \(a=0,1^{0,1}\), \(b=0,2^{0,2}\) и \(c=0,3^{0,3}\), тада је

    \(b<c<a\)
    \(b<a<c\)
    \(c<b<a\)
    \(a<b<c\)
    \(c<a<b\)

    Провери одговоре Не знам

  • 14.      

    Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:

    \(144\)
    \(36\)
    \(72\)
    \(64\)
    \(1\)

    Провери одговоре Не знам

  • 15.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(-x_1x_2+x_1+x_2-4=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(3x_1x_2+x_1+x_2-1=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)

    Провери одговоре Не знам

  • 16.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    4cm
    2,5cm
    3,5cm
    2cm
    3cm

    Провери одговоре Не знам

  • 17.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(\frac{2}{e}\)
    \(\frac{1}{e}\)
    \(e\)
    \(2e\)
    \(\frac{3}{e}\)

    Провери одговоре Не знам

  • 18.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(\frac{(8!)^2}{2}\)
    \(2\cdot 6!\)  
    \(15\cdot 6!\)
    \(\frac{8!}{4!}\)
    \(30\cdot 6!\)

    Провери одговоре Не знам

  • 19.      

    Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
     

    \(3\pi +1 \)
    \(\frac{5\pi}{2}\)
    \(12\pi -1 \)
    \(\frac{\pi^2-1}{2} \)
    \(5\pi +2 \)

    Провери одговоре Не знам

  • 20.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(-\frac{11}{8} \)
    \(\frac{11}{2} \)
    \(-\frac{11}{2} \)
    \(\frac{11}{8}\)
    \(0 \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време