Задаци

  • 1.      

    Ако график функције \(y=\frac{1}{x^2-ax+2}\) садржи тачку \(M\left( -3, \frac{1}{19} \right)\) онда је највећа вредност функције једнака:

    \(4\)
    \(\frac{9}{2}\)
    \(\frac{3}{10}\)
    \(\frac{3}{22}\)
    \(\frac{1}{2}\)

    Провери одговоре Не знам

  • 2.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(-\frac{11}{2} \)
    \(\frac{11}{2} \)
    \(0 \)
    \(\frac{11}{8}\)
    \(-\frac{11}{8} \)

    Провери одговоре Не знам

  • 3.      

    Који од датих интервала садржи сва решења једначине \(\frac{x-1}{\sqrt{x}+1}= 4+\frac{\sqrt{x}-1}{2}\)?

    \((−1, 1)\)
    \([1, 6)\)  
    \((10, 24]\)
    \([6, 10]\)
    \((24, 92]\)

    Провери одговоре Не знам

  • 4.      

    Ако је \(f \left( \frac{x+3}{x+1} \right)=3x+2\) за \(x \in R \backslash \{ -1 \}\), онда је \(f(5)\) једнако:

    \(\frac{1}{2}\)
    \(-\frac{1}{2}\)
    5
    \(\frac{5}{2}\)
    17

    Провери одговоре Не знам

  • 5.      

    На колико начина се у ред могу поређати 5 ученика и 2 ученице, тако да ученице не стоје једна до друге?

    \(3600 \)
    \(2400 \)
    \(7680 \)
    \(250 \)
    \(240\)

    Провери одговоре Не знам

  • 6.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(1\)
    \(21\)
    \(48\)
    \(84\)
    \(5\)

    Провери одговоре Не знам

  • 7.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    40°
    80°
    60°
    120°
    100°

    Провери одговоре Не знам

  • 8.      

    Збир првих 2012 чланова аритметичке прогресије \(\frac{2011}{2012}, \frac{2010}{2012}, \frac{2009}{2012}, \cdots \) износи:

    \(\frac{2013}{2} \)
    \(\frac{2013}{4} \)
    Ни један од понуђених одговора
    \(\frac{2011}{4} \)
    \(\frac{2011}{2} \)

    Провери одговоре Не знам

  • 9.      

    У оштроуглом троуглу странице су \(a = 1\) и \(b=2\), а површина \(P=\frac{12}{13}\). Дужина треће странице \(c\) тог троугла једнака је:

    \(\frac{5\sqrt{5}}{\sqrt{13}}\)
    \(\frac{\sqrt{85}}{\sqrt{13}}\)
    \(\frac{3\sqrt{5}}{\sqrt{13}}\)
    \(\frac{4\sqrt{5}}{\sqrt{13}}\)
    \(\frac{2\sqrt{5}}{\sqrt{13}}\)

    Провери одговоре Не знам

  • 10.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)

    Провери одговоре Не знам

  • 11.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{2\pi s^3\sqrt{3}}{27}\)
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
    \(\frac{\pi s^3\sqrt{3}}{9}\)  
    \(\frac{\pi s^3\sqrt{3}}{27}\)  
     \(\frac{2\pi s^3\sqrt{2}}{27}\)

    Провери одговоре Не знам

  • 12.      

    Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)

    \((-\infty, -a) \cup (a, +\infty ) \)
    \((a, +\infty ) \)
    \((-b, -a) \cup (a, b) \)
    \((-\infty, -a) \)
    \((-\infty, -a) \cup (-a, a ) \cup (a, +\infty ) \)

    Провери одговоре Не знам

  • 13.      

    Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:

    126
    109
    140
    133
    116

    Провери одговоре Не знам

  • 14.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(\frac{3}{e}\)
    \(\frac{1}{e}\)
    \(e\)
    \(\frac{2}{e}\)
    \(2e\)

    Провери одговоре Не знам

  • 15.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(\sqrt{3}\)
    \(-\frac{2}{\sqrt{3}}\)
    \(\frac{\sqrt{3}}{2}\)  
    \(\frac{1}{2}\)
    \(1\)

    Провери одговоре Не знам

  • 16.      

    Последња цифра броја \(7^{2009}\) је:

    3
    1
    5
    9
    7

    Провери одговоре Не знам

  • 17.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(\frac{1}{2}\)
    \(-\frac{1}{22}\)
    \(-\frac{1}{2}\)
    \(\frac{1}{11}\)
    \(\frac{1}{22}\)

    Провери одговоре Не знам

  • 18.      

    Скуп решења неједначине \(2\ln(1-x)-\ln(2x+6) \leq 0\) је:

    \([-1,1)\)
    \((-3,5]\)
    \([-1,5]\)
    \([-2,1)\)
    \((-3,1)\)

    Провери одговоре Не знам

  • 19.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(3 \)
    \(1 \)
    \(2 \)
    Ниједан од понуђених одговора
    \(0 \)

    Провери одговоре Не знам

  • 20.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{\sqrt{5}}{3}\)
    \(\frac{3}{2}\)
    \(\frac{\sqrt{10}}{2}\)
    \(\frac{\sqrt{10}}{3}\)
    \(\frac{\sqrt{5}}{2}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време