Задаци

  • 1.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{1-\sqrt{5}}{16}\)
    \(-2-\sqrt{5}\)
    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{1}{3-\sqrt{5}}\)
    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)

    Провери одговоре Не знам

  • 2.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(4\)
    \(0\)
    \(3\)
    \(1\)
    \(2\)

    Провери одговоре Не знам

  • 3.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

    \(20cm\)
    \(6cm\)
    \(5cm\)  
    \(10cm\)      
     такав трапез не постоји

    Провери одговоре Не знам

  • 4.      

    На колико начина се у ред могу поређати 5 ученика и 2 ученице, тако да ученице не стоје једна до друге?

    \(3600 \)
    \(240\)
    \(250 \)
    \(2400 \)
    \(7680 \)

    Провери одговоре Не знам

  • 5.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(\sqrt{3}\)
    \(1\)
    \(\frac{1}{2}\)
    \(-\frac{2}{\sqrt{3}}\)
    \(\frac{\sqrt{3}}{2}\)  

    Провери одговоре Не знам

  • 6.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(1\)
    \(\frac{3}{2}\)
    \(2\)
    \(3\)
    \(\frac{5}{2}\)

    Провери одговоре Не знам

  • 7.      

    Вредност израза \(\left( 1-sin\frac{\pi}{8} \right)\left( 1+sin\frac{\pi}{8} \right)\) је:

    \(\frac{\sqrt{2}}{4}\)
    \(\frac{\sqrt{2}}{8}\)
    \(\frac{2-\sqrt{2}}{4}\)
    \(\frac{2+\sqrt{2}}{4}\)
    \(\frac{1}{4}\)

    Провери одговоре Не знам

  • 8.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    3cm
    3,5cm
    4cm
    2,5cm
    2cm

    Провери одговоре Не знам

  • 9.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

    \(8\pi cm^3\)
     \(\frac{\pi}{2} cm^3\)  
    \(\frac{\pi}{3} cm^3\)
    \(\pi^2 cm^3\)    
    \(\pi cm^3\)

    Провери одговоре Не знам

  • 10.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(5\)
    \(48\)
    \(1\)
    \(84\)
    \(21\)

    Провери одговоре Не знам

  • 11.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(0\)  
    \(2\)
    \(−1\) 
    \(1\)
    \(2\) 

    Провери одговоре Не знам

  • 12.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([3\sqrt{3},6)\)
    \(\emptyset\)
    \([6,8)\)
    \([\sqrt{3},2\sqrt{3})\)
    \((2\sqrt{3},3\sqrt{3})\)

    Провери одговоре Не знам

  • 13.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

    \(\frac{3a}{\sqrt{2}}\)  
    \(\frac{a+1}{a}\)
    \(\frac{\sqrt{5}a}{4}\)
    \(\frac{5a}{4}\)
     \(\frac{3a}{2}\)  

    Провери одговоре Не знам

  • 14.      

    Ако је \(i^{2}=-1\) и \(\varepsilon\) комплексан број који задовољава услов \(\varepsilon ^{2} + \varepsilon +1=0 ,\) тада је решење једначине \(\frac{x-1}{x+1}=\varepsilon \frac{1+i}{1-i}\) по \(x\) једнако:

    \(2\varepsilon −1−2i \)
    \(−2\varepsilon −1+2i \)
    \(−2\varepsilon +1−2i \)
    \(−2\varepsilon −1−2i \)
    \(2\varepsilon +1−2i \)

    Провери одговоре Не знам

  • 15.      

    Вредност израза \(\left ( \frac{\left ( -0,4 \right )^{3}}{\left ( -0,8 \right )^{3}}- \frac{\left ( -0,8 \right )^{3}}{\left ( -0,4 \right )^{3}} \right ):\left ( \frac{3}{4}-3 \right )\) једнака је:

    \(\frac{4}{9} \) 
    \(\frac{7}{2} \) 
    \(\frac{7}{9} \) 
    \(\frac{9}{2} \) 
    \(\frac{63}{8} \)

    Провери одговоре Не знам

  • 16.      

    Највећа вредност функције \(f(x) = |2x + 1| + |x − 3| − |5x − 4|\) ,  \(x \in R\)  је:

    \(2,6\) 
    \(4,8\)
    \(−4\)
    \(2\)      
    \(−3\)    

    Провери одговоре Не знам

  • 17.      

    Ако су \(A\) и \(B\) тачке на кругу \(x^2  + y^2  + 4x + 4y + 5  =  0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако: 
     

     

    \(5\sqrt{3}+5\)  
    \(5\sqrt{3}\)
    \(10\)  
    \(5\)  
    \(5-\sqrt{3}\)

    Провери одговоре Не знам

  • 18.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(\frac{(8!)^2}{2}\)
    \(\frac{8!}{4!}\)
    \(30\cdot 6!\)
    \(15\cdot 6!\)
    \(2\cdot 6!\)  

    Провери одговоре Не знам

  • 19.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([2 \cdot 10^5, 3 \cdot 10^5)\)

    Провери одговоре Не знам

  • 20.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    1
    0
    4
    2
    3

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време