Задаци

  • 1.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    2cm
    4cm
    3,5cm
    2,5cm
    3cm

    Провери одговоре Не знам

  • 2.      

    У оштроуглом троуглу странице су \(a = 1\) и \(b=2\), а површина \(P=\frac{12}{13}\). Дужина треће странице \(c\) тог троугла једнака је:

    \(\frac{\sqrt{85}}{\sqrt{13}}\)
    \(\frac{2\sqrt{5}}{\sqrt{13}}\)
    \(\frac{5\sqrt{5}}{\sqrt{13}}\)
    \(\frac{3\sqrt{5}}{\sqrt{13}}\)
    \(\frac{4\sqrt{5}}{\sqrt{13}}\)

    Провери одговоре Не знам

  • 3.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a)\cup(d,+\infty)\)
    \((-\infty,a)\cup[b,c)\)
    \((a,b)\cup\{c\}\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((-\infty,a]\cup(b,c)\)

    Провери одговоре Не знам

  • 4.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{3}+2) \)
    \(6(\sqrt{3}-\sqrt{2}) \)
    \(3(-\sqrt{3}+2) \)
    \(6(\sqrt{2}-1) \)
    \(6(\sqrt{2}+1) \)

    Провери одговоре Не знам

  • 5.      

    Збир првих 2012 чланова аритметичке прогресије \(\frac{2011}{2012}, \frac{2010}{2012}, \frac{2009}{2012}, \cdots \) износи:

    \(\frac{2011}{4} \)
    \(\frac{2013}{2} \)
    \(\frac{2011}{2} \)
    \(\frac{2013}{4} \)
    Ни један од понуђених одговора

    Провери одговоре Не знам

  • 6.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \(\emptyset\)
    \((2\sqrt{3},3\sqrt{3})\)
    \([3\sqrt{3},6)\)
    \([\sqrt{3},2\sqrt{3})\)
    \([6,8)\)

    Провери одговоре Не знам

  • 7.      

    Скуп решења неједначине \(2\ln(1-x)-\ln(2x+6) \leq 0\) је:

    \([-1,5]\)
    \([-2,1)\)
    \([-1,1)\)
    \((-3,1)\)
    \((-3,5]\)

    Провери одговоре Не знам

  • 8.      

    Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:

    \(2\)
    \(1 \)
    \(4\sqrt{3} \)
    \(2\sqrt{3}\)
    \(4 \)

    Провери одговоре Не знам

  • 9.      

    Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)

    \((-\infty, -a) \cup (-a, a ) \cup (a, +\infty ) \)
    \((-\infty, -a) \)
    \((-b, -a) \cup (a, b) \)
    \((a, +\infty ) \)
    \((-\infty, -a) \cup (a, +\infty ) \)

    Провери одговоре Не знам

  • 10.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{7} \)
    \(\sqrt{5} \)
    \(\sqrt{3} \)
    \(0 \)
    \(\sqrt{2} \)

    Провери одговоре Не знам

  • 11.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([−8, −4)\)
    \([−10, −8)\)  
    \([−4, −2)\)   
    \([2, 4]\)
    \([−2, 2)\)  

    Провери одговоре Не знам

  • 12.      

    Вредност израза \(\left ( \frac{\left ( -0,4 \right )^{3}}{\left ( -0,8 \right )^{3}}- \frac{\left ( -0,8 \right )^{3}}{\left ( -0,4 \right )^{3}} \right ):\left ( \frac{3}{4}-3 \right )\) једнака је:

    \(\frac{7}{9} \) 
    \(\frac{63}{8} \)
    \(\frac{4}{9} \) 
    \(\frac{9}{2} \) 
    \(\frac{7}{2} \) 

    Провери одговоре Не знам

  • 13.      

    Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
     

    \(3\pi +1 \)
    \(\frac{5\pi}{2}\)
    \(12\pi -1 \)
    \(\frac{\pi^2-1}{2} \)
    \(5\pi +2 \)

    Провери одговоре Не знам

  • 14.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    ниједан од понуђених одговора
    \(y^{2}+(a+1)y-a^2+a+1=0\)
    \(y^{2}+(a^2+1)y+a^2-a+1=0\)
    \(y^{2}+(a^2+1)y+1=0\)
    \(y^{2}+(a+1)y+a^2-a+1=0\)

    Провери одговоре Не знам

  • 15.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(127\)
    \(93\)
    \(103\)
    \(141\)
    \(88\)

    Провери одговоре Не знам

  • 16.      

    Последња цифра броја \(7^{2009}\) је:

    3
    9
    5
    7
    1

    Провери одговоре Не знам

  • 17.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

    \(8\pi cm^3\)
    \(\frac{\pi}{3} cm^3\)
    \(\pi cm^3\)
    \(\pi^2 cm^3\)    
     \(\frac{\pi}{2} cm^3\)  

    Провери одговоре Не знам

  • 18.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(15\cdot 6!\)
    \(\frac{8!}{4!}\)
    \(30\cdot 6!\)
    \(\frac{(8!)^2}{2}\)
    \(2\cdot 6!\)  

    Провери одговоре Не знам

  • 19.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{-2+b}{b(a-4)} \)
    \(\frac{1+b}{b(a+3)} \)
    \(\frac{b-2}{(b+1)(a+3)} \)
    \(\frac{1+b}{b(a+4)} \)
    \(\frac{2+b}{b(a+3)} \)

    Провери одговоре Не знам

  • 20.      

    Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\)  је:

    \(0\)
    \(−2\)    
    бесконачан
     \(1\)  
    \(−1\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време